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ABSTRACT

We describe a general approach to automatic model generation in the de-
scription of dynamic regulatory networks. Several potential areas of ap-
plication of this technique are outlined. We then describe how a particular
implementation of this approach, Cellerator, has been used to study the
mitogen-activated protein kinase (MAPK) cascade. These signal transduc-
tion modules occur both in solution and when bound to a scaffold protein,
and we have generalized the technique to include both types of module.
We show that the results of simulations with the Cellerator–created model
are consistent with our previously published report, where an indepen-
dently written model was developed. New results made possible by the
use of Cellerator are also presented. An important aspect of Cellerator op-
eration – explicit output description at several steps during model gener-
ation – is emphasized. This design allows intervention and modification
of the model “on the go” leading to both a more flexible of model descrip-
tion and a straightforward error correction mechanism. We also outline
our future plans in Cellerator development.

INTRODUCTION

In the past few decades the rapid gain of information about intracellular
signal transduction and genetic networks has led to the view of regulatory
biomolecular circuits as highly structured multi-component systems that
have evolved to perform optimally in very uncertain environments. This
emergent complexity of biochemical regulation necessitates the develop-
ment of new tools for analysis, most notably computer assisted mathemat-
ical models. Computer modeling has proved to be of crucial importance
in the analysis of genomic DNA sequences and molecular dynamics sim-
ulations and is likely to become an indispensable tool in biochemical and
genetic research. Several platforms have been (or are being) developed



that enable biologists to do complex computational simulations of vari-
ous aspects of cellular signaling and gene regulatory networks.

In spite of their promise, these new modeling environments have
not been widely utilized in the biological research community. Arguably,
among the reasons for this is a relative inaccessibility of the modeling
interface for the typical classically trained geneticist or biochemist. In-
stead of cartoon representations of signaling pathways, in which activa-
tion can be represented simply by an arrow connecting two molecular
species, users are often asked to write specific differential equations or
chose among different modeling approximations. Even for fairly modest
biomolecular circuits such a technique would involve explicitly writing
dozens (or even hundreds) of differential equations, a job that can be te-
dious, difficult, and highly error prone, even for an experienced mod-
eler. Thus it would be extremely helpful to have a modeling interface
that would automatically convert a cartoon- or reaction-based biochem-
ical pathway description into a mathematical representation suitable for
the solvers built into various currently existing software packages.

In addition to being more accessible to a wider research community,
a tool allowing the automatic generation of mathematical models would
facilitate the modeling of complex networks and interactions. For ex-
ample, in intracellular signal transduction it is not uncommon to find
multi-molecular complexes of modifiable proteins. The number of differ-
ent states that a multi-molecular complex, along with the number of equa-
tions required to fully describe the dynamics of such a system, increases
exponentially with the number of participating molecules or classes of
molecules. One typical complex – scaffolds in MAPK cascades – will be
studied in detail later in this report. It is often the case that the dynamics
of each state is of interest. A modeler then faces the unpleasant, and po-
tentially error prone task, of writing dozens, if not hundreds, of equations.
Automatic equation generation can significantly ease this task.

In this report we consider a general approach to automatic model gen-
eration for the description of dynamic regulatory networks. Several po-
tential areas of application of this technique will be outlined. We then
will describe how a particular implementation of this approach, Cellera-
tor, has been used to study the mitogen-activated protein kinase (MAPK)
cascade signal transduction modules operating in solution or when bound
to a scaffold protein. An important aspect of Cellerator operation – ex-
plicit output description and flexible user intervention at several steps
through the model generation – will be emphasized. This design, which
allows intervention and modification of the model “on the fly” leads to
increased model design flexibility and provides an immediate error cor-
rection mechanism.
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AUTOMATIC MODEL GENERATION

Canonical Forms for Cell Simulation

We can loosely classify the components needed to perform cell simulation
in order of their biological complexity: simple chemical reactions includ-
ing degradation, enzymatic reactions in solution, multi-molecular com-
plexes with a non-trivial number of states (e.g., scaffold proteins), multiple
interacting and non-overlapping pathways, transcription, translation, in-
tracellular components, transport processes and morphogenesis. We will
examine these processes and attempt to derive general canonical forms that
can be used to describe these processes in the following paragraphs. These
canonical forms can be either input forms, such as chemical reactions, or
output forms, such as differential equations that are automatically gener-
ated by the program. It is crucial to identify these canonical forms so that
an efficient mapping from the input forms to the output forms can be im-
plemented. Specific examples of how these forms may be implemented in
a computer program are given in the following section.

Biochemistry is frequently referred to as the language of biology, in
much the same way that mathematics has been called the language of
physics. Cellular activity is generally expressed in terms of the biochemi-
cal cascades that occur. These chemical reactions constitute the core of our
input forms; the corresponding differential equations constitute the core
of our output forms. (Differential equations can be thought of as output
because they are passed on to solver and/or optimizer modules to han-
dle). A fundamental library of simple chemical reactions can be quickly
developed; such reactions take the form

∑
X i∈S ′⊂S

Xi
k−→

∑
Yi∈S ′′⊂S

Yi (1.1)

where S is a set of reactants and S′ and S′′ are (possible empty and possibly
non-distinct) subsets of S and k is a representation of the rate at which the
reaction proceeds. In general there are rarely more than two elements in
either S′ or S′′ but it is possible for there to be more. For example, all of the
following chemical reactions fall into this form:

A + B → C = AB complex formation

C = AB → A + B dissociation

A → B conversion (1.2)

A → φ degradation

φ → A creation (e.g., through transcription)

Enzyme kinetic reactions, which are usually written as

5 Automatic Model Generation for Signal Transduction



S + E → P + E (1.3)

where E is an enzyme that facilitates the conversion of the substrate S into
the product P , would also fall into this class. More generally, equation (1.3)
is a simplification of the cascade

S + E ↔ SE → S + P (1.4)

where the bi-directional arrow indicates that the first reaction is reversible.
Thus (1.4) is equivalent to the triplet of reactions

{S + E → SE, SE → S + E, SE → S + P} (1.5)

The reactions (1.4) or (1.5) can be written compactly with the following
double-arrow notation

S
E

=⇒ P (1.6)

which should be read as “the conversion of S to P is catalyzed by an
enzyme E .” If there is also an second enzyme, G, that can catalyze the
reverse reaction

P
G

=⇒ S = {P + G → G P, G P → G + P, G P → G + S} (1.7)

we further use the double-double arrow notation

S
E

⇐⇒
G

P (1.8)

to compactly indicate the pair of enzymatic reactions given by (1.6) and
(1.7). The enzyme above the arrow always facilitates the forward reaction,
and the enzyme beneath the reaction always facilitates the reverse reac-
tion. For example, E might be a kinase and G might be a phosphatase
molecule. Since each of equations (1.6) and (1.7) represent a triplet of sim-
pler reactions, we observe that the notation of equation (1.8) compactly
represents a total of six elementary reactions, each of which is in the form
given by equation (1.1). We therefore take equation (1.1) as our input
canonical form for chemical reactions. The corresponding output canoni-
cal form is given by the set of differential equations

τi Ẋ i =
∑
α

ciα

∏
j

X
niα j
j (1.9)
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where the τi and ciα are constants that are related to the rate constants , the
signs of the cia are determined from which side of equation (1.1) the terms
in equation (1.9) correspond to, and the niα j represent the cooperativity
of the reaction. The summation is taken over all equations in which Xi

appears. Multi-molecular reactions (e.g., binding to a scaffold protein) and
multiple interacting and overlapping pathways are described in much the
same way - there are just more reactions that must be included in our
model. The canonical forms (1.1) and (1.9) can still describe each one of
these reactions.

Genetic transcription and translation into proteins can be described by
an extension of equation (1.9) to include terms of the form

τi Ẋ i =
∏
β

ciβ X
nβ

β

K
nβ

iβ + X
nβ

β

(1.10)

where the product runs over the various transcription factors Xβ that
influence production of Xi . If there are any reactions of the form (1.1) for
Xi then the expression on the right side of equation (1.10) would be added
to the right hand side of (1.9). In a more realistic system, a gene would be
influenced by a (possibly large) set of promoter and enhancer elements Xi

that bind to different sites. A hierarchical model could describe this set of
interactions

τi Ẋ i = Jui

1 + Jui
− λi Xi (1.11)

ui =
∏
α∈i

1 + Jαṽα

1 + Ĵαṽα

(1.12)

ṽα = K̃α ũα

1 + K̃α ũα

(1.13)

ũα =
∏
b∈α

1 + Kbv
n(b)
j (b)

1 + K̂bv
n(b)
j (b)

(1.14)

where i and j index transcription factors, α indexes promoter modules,
b indexes binding sites, the function j (b) determines which transcription
factor j binds at site j , the J and K are constants, and λ is a degradation
rate.

Sub-cellular components represent a higher order of biological com-
plexity. If we assume perfect mixing each component can be treated as a
separate pool of reactants which we can describe by the reaction

X A → X B (1.15)

This is taken to mean that X in pool A is transported into pool B at some
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rate. When the concentration changes and distances involved are small
such processes can be described by the canonical forms in equation (1.1).
In large or elongated cells with long processes (such as neurons) or when
the molecules have a net charge the transport process defined in equation
(1.15) can not be described by the output canonical form (1.9). Instead we
must modify this ordinary differential equation into a partial differential
equation to allow for diffusion,

τi
∂ Xi

∂ t
= ∇ • (Di∇Xi + Ci Di∇V ) +

∑
α

ciα

∏
j

X
niα j
j (1.16)

where the Di are (possibly spatially dependent) diffusion constants for
species Xi , Ci are charge and temperature dependent constants, and V is
the voltage. Other voltage and pressure dependent movement between
compartments (especially those with membranes) that are controlled by
channels and transport proteins could be described by including addi-
tional terms on the right hand side of equation (1.16) (e.g., Hodgkin-
Huxley type expressions).

IMPLEMENTATION

In standard biochemical notation, protein cascades are represented by a
arrow-sequence of the form

A ⇒ B ⇒ · · · (1.17)

where each step (the A, B ,...) would represent, for example, the activation
of a particular molecular species. Our goal is to translate the cascade (1.17)
into a computable form while retaining the biological notation in the user
interface. Mathematically, we can specify such as cascade as a multiset

C = {P, R, IC, I, F} (1.18)

where P is a set of proteins, R is a set of reactions, IC is a set of initial
conditions, I is a set of input functions, and F is a set of output functions.

To illustrate this transformation process (from the biochemical nota-
tion, such as in equation (1.17), to the mathematical notation, as in equa-
tion (1.18)), we consider the example where equation (1.17) represents a
simple linear phosphorylation cascade. In this case equation (1.17) would
mean that A facilitates the phosphorylation of B , which in turn facilitates
the phosphorylation of C , and so forth. In general, a cascade can have any
length, so we define the elements of a cascade with a simple indexed no-
tation, e.g.,

K4 ⇒ K3 ⇒ K2 ⇒ K1 (1.19)
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where K is used to indicate that all the members of the cascade induce
phosphorylation of their substrates, that is they are kinases. In general,
activation can proceed by any specified means.

This indexed notation is always used internally by the program. The
user, however, has the option of using either common names or the in-
dexed variables. There is still a great deal of information hidden in this
expression, such as how many phosphate groups must be added to make
each successive protein active. In the MAPK cascade for example (as ex-
plained below), the input signal that starts this cascade is K4. The output,
however, is not K1, as this notation would suggest, but a doubly phospho-
rylated version of K1. Hence for MAPK cascade we introduce a modified
notation:

K3

K4

=⇒ K ∗
3

K2

K ∗
3

=⇒ K ∗
2

K ∗
3

=⇒ K ∗∗
2 (1.20)

K1

K ∗∗
2

=⇒ K ∗
1

K ∗∗
2

=⇒ K ∗∗
1

where each phosphate group that has been added is indicated with an
asterisk. From this notation it is clear that the input is K4 and the output
is K ∗∗

1 .
In general, suppose we have a cascade formed by n proteins K1, K2,...,

Kn , and that the i th protein Ki can be phosphorylated ai times. Denote by
K j

i the fact that kinase Ki has be phosphorylated j (possibly zero) times.
The set P of all kinases Ki

j in an n-component cascade is then

P =
{

K j
i |i = 1, 2, ..., n, j = 0, 1, . . . , ai

}
(1.21)

The reactions in the cascade are of the form

R =

K j

i

K ai+1
i+1

=⇒ K j+1
i

∣∣ i = 1, . . . , n − 1, j = 0, . . . , a j − 1


 (1.22)

We note at this point that this notation describes a linear cascade, in which
each element Ki is only phosphorylated by the active form of Ki+1. It does
not include other reactions, when, for example, K3 might, under special
circumstances, phosphorylate K1 directly without the intermediate step
of first phosphorylating K2. Such additional reactions could be added, but
they have been omitted from this presentation to simplify the discussion.
We can also add the dephosphorylation enzymes, or phosphatases, with a
double-arrow notation:
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R =

K j

i

K ai+1
i+1

=⇒
Phi

K j+1
i

∣∣ i = 1, . . . , n − 1, j = 0, . . . , a j − 1


 (1.23)

In general, it is not necessary to specify explicit conservation laws with
this notation because they are built directly into the equations. For exam-
ple, we do not have to separately specify that the quantities

K Total
i =

ai∑
j=0

K j
i (1.24)

because this is implicit in the differential equations that are built using this
notations. We do, however, have to specify the initial conditions,

IC =
{

K j
i (0) | i = 1, 2, ..., n, j = 0, 1, . . . , ai

}
(1.25)

Next, we need to specify how the cascade is initiated. For example if K4 is
not present until some time ton and then is fixed at a level c, would write
the set of input functions as

I = {K4(t) = cH (t − ton)} where H (t) =
{

0 (t < 0)

1 (t ≥ 0)
(1.26)

is the Heaviside step function. In some cases, we are only interested in the
total quantity of each substance produced as a function of time, e.g., K j

i (t).
More generally, we would also specify a set of output functions F . For
example we might have F = { f, g } where f (T ) is the total accumulated
protein concentration after some time T ,

f (T ) =
∫ T

ton

K a1
1 (t)dt (1.27)

and g(c) is the steady state concentration of activated kinase,

g(c) = lim
ton→∞

[
lim

t→∞ K a1
1 (t)

]
(1.28)

where c is the input signal specified I . Then the cascade is then completely
specified by the multiset C = {P, R, IC, I, F}.

If we have an additional regulatory protein, such as a scaffold that
holds the various proteins in equation (1.20) together there are additional
reactions. These describe binding of the enzymes to the scaffold and phos-
phorylation within the scaffold. We describe the scaffold itself by defining
an object Sp1, p2,··· ,pn where n is as before (the number of kinases that may
bind to the scaffold, or alternatively, the number of “slots” in the scaf-
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fold) and pi ∈ ε, 0, 1, . . . , ai indicates the state of phosphorylation of the
proteins in each slot. Thus if pi = ε (or, alternatively, -1) the slot for Ki is
empty, if pi = 0, K 0

i is in the slot, etc. For a three-slot scaffold, for example,
we would add to the set P the following set

P ′ = {
Si jk

∣∣ i = ε, 0, 1, . . . , a1, j = ε, 0, 1, . . . , a2, k = ε, 0, 1, . . . , a3
}

(1.29)
To describe binding to the scaffold, we would also add to the set R the
following reactions

R′ =
{

Sp1,··· ,pi =ε,··· ,pn + K j
i ↔ Sp1,··· ,pi= j,··· ,pn

}
(1.30)

where the indices run over all values in the range

pi =
{

ε, 0, 1, . . . , ai , i �= j
0, 1, . . . , ai , i = j

(1.31)

For the three-member scaffold this would be

R′ =
{

Sε j k + K i
1 ↔ Si jk , i = 0, . . . , a1, j = ε, 0, . . . , a2, k = ε, 0, . . . , a3

}
⋃ {

Siεk + K j
2 ↔ Si jk , i = ε, 0, . . . , a1, j = 0, . . . , a2, k = ε, 0, . . . , a3

}
⋃ {

Si jε + K k
3 ↔ Si jk , i = ε, 0, . . . , a1, j = ε, 0, . . . , a2, k = 0, . . . , a3

}
(1.32)

Finally, we have phosphorylation in the scaffold. This can be done either
by a protein that is not bound to the scaffold, e.g., for the input signal,

R′′ =
{

Sp1,··· ,pi−1= j<ai−1 , pi =ai ,··· ,pn + K ⇔ Sp1,··· ,pi−1= j+1, pi=ai ,··· ,pn

}
(1.33)

where the two-sided double arrow (⇔) is used as shorthand for the (possi-
bly bi-directional) enzymatic reaction, or by one that is bound to the scaf-
fold,

R′′′ =
{

Sp1,··· ,pi−1= j<ai−1 , pi =ai ,··· ,pn → Sp1,··· ,pi−1= j+1, pi=ai ,··· ,pn

}
(1.34)

or by some combination of the two, all of which must be added to the
reaction list R. For the three-slot scaffold with external signal K4 that
activates K3, we have

R′′ = {
Si,a2,k → Si+1,a2,k, i = 0, . . . , a1 − 1, k = ε, 0, . . . , a3

}
⋃ {

Si, j,a3 → Si, j+1,a3 , i = ε, 0, . . . , a1, j = ε, 0, . . . , a2 − 1
}

(1.35)

and
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R′′′ =
{

Si jk ⇔K4
Ph3

Si, j,k+1, i = ε, 0, . . . , a1, j = ε, 0, . . . , a2, k = 0, . . . , a3 − 1
}

(1.36)
Typical ai values for this type of cascade are a1 = a2 = 2 and a3 = 1.

As an example, let us continue with the above-mentioned three-
member cascade that is initiated with K4. In what follows, we refer to
Cellerator, a Mathematica R© package that implements the above algo-
rithms. In Cellerator we have defined the function

genReacts[kinase-name, n, {ai}, phosphatase-name],

where kinase-name and phosphatase-name are the names we want to give to
the sequences of kinases and phosphatases, respectively, and n and ai are
as before. The following Cellerator command then generates the above set
of reactions (1.20),

The input is in the first line while the output is the second line. Alter-
natively, the user could specify the set of reactions explicitly, or copy the
output to a later cell to manually add additional reactions. If RAF has been
set up as an alias for K3 then the rate constants are specified by a content-
addressable syntax, e.g., as

corresponding to

R AF + R AF K

a1

⇐⇒
d1

R AF − R AF K
k1

=⇒ R AF∗ + R AF K (1.37)

and

R AF∗ + R AF P

a2

⇐⇒
d2

R AF∗ − R AF P
k2

=⇒ R AF + R AF P (1.38)

12 Bruce E. Shapiro, et al.



and so forth, where the numbers over the arrows indicate the rate con-
stants (and not enzymes, as with the double arrow notation). Cellerator
first translates the five high-order reactions (equation (1.20)) into the cor-
responding set of 30 low-level reactions. Each low-level reaction (such as
intermediate compound formation) is determined by applying the appro-
priate enzyme-kinetics description, and has a unique rate constant. The
low-level reactions are subsequently translated into the appropriate set of
21 differential equations for the eight kinases, three phosphatases and ten
intermediate compounds. When scaffold proteins are included (discussed
below) these numbers increase to 139 high level reactions, 348 low-level
reactions (300 without kinases), and 101 differential equations (85 without
kinases).

MAPK PATHWAY WITH SCAFFOLDS: EXPERIMENTAL BACKGROUND

The mitogen-activated protein kinase (MAPK) cascades (Figure 1.1) are a
conserved feature of a variety of receptor mediated signal transduction
pathways (Garrington and Johnson, 1999; Widmann et al., 1999; Gustin et
al., 1998). In humans they have been implicated in transduction of signals
from growth factor, insulin and cytokine receptors, T cell receptor, het-
erotrimeric G proteins and in response to various kinds of stress (Garring-
ton and Johnson, 1999; Putz et al., 1999; Sternberg and Alberola-Ila, 1998;
Crabtree and Clipstone, 1994; Kyriakis, 1999). A MAPK cascade consists of
three sequentially acting kinases. The last member of the cascade, MAPK
is activated by dual phosphorylation at tyrosine and threonine residues by
the second member of the cascade: MAPKK. MAPKK is activated by phos-
phorylation at threonine and serine by the first member of the cascade:
MAPKKK. Activation of MAPKKK apparently proceeds through different
mechanisms in different systems. For instance, MAPKKK Raf-1 is thought
to be activated by translocation to the cell membrane, where it is phospho-
rylated by an unknown kinase. All the reactions in the cascade occur in
the cytosol with the activated MAPK translocating to the nucleus, where
it may activate a battery of transcription factors by phosphorylation.
MAPK cascades have been implicated in a variety of intercellular pro-
cesses including regulation of the cell cycle, apoptosis, cell growth and
responses to stress. These molecules are of crucial importance in the de-
velopment of memory and wound healing. Abnormal changes in MAPK
pathway regulation often mediate various pathologies, most notably can-
cer. This central role of MAPK mediated signal transduction in most reg-
ulatory processes makes it an especially attractive research and modeling
object.

Signal transduction through a MAPK cascade can be very inefficient
unless additional regulatory proteins, called scaffolds, are present in the
cytosol. Scaffold proteins nucleate signaling by binding two or more MAP
kinases into a single multi-molecular complex. It has been reported pre-
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Figure 1.1 The topology of MAPK signaling cascade. Each double arrow
represents activation through dual phosphorylation. Two and three-member
scaffolds have been identified experimentally and are depicted here.

viously that scaffolds can both increase and decrease the efficiency of sig-
naling in a concentration dependent manner (Levchenko et al., 2000). In
addition they can reduce the non-linear activation characteristics of the
cascade. These properties may be crucial for global and local activation of
MAPK as scaffold proteins may selectively translocate to small subcellu-
lar compartments, thus locally facilitating or inhibiting MAPK activation.
In this report we show how the use of Cellerator software package has
allowed us to substantially improve our earlier model and study its para-
metric dependence in a manner not investigated in the preceding report.

MAPK PATHWAY WITH SCAFFOLDS: RESULTS

As described above, addition of scaffold proteins into the MAPK reaction
system results in markedly increased number of states and equations de-
scribing transitions between them. Here the benefits provided by Cellera-
tor can really be appreciated, as a simple sequence of commands can lead
to automatic description of all reactions involving scaffold-kinase com-
plexes (see Figure 1.2).

In our simulations the first goal was to verify the automatic model gen-
eration for scaffold-medicated MAPK cascade as implemented in Cellera-
tor. As a basis for the comparison we referred to our previous report de-
scribing a quantitative model of the effect scaffold proteins can play in
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MAPK mediated signal transduction. When all the assumptions of that
model were made again exactly the same solution for the three-member
scaffold case was obtained. This convergence of results verified the model
generated by Cellerator. In addition, the difficulty of manual generation
of all the necessary equations, a limiting factor of the previous study, has
now been removed. We thus attempted to study a more detailed model,
in which some of the previous assumptions were relaxed.

Figure 1.2 The implementation of automatic generation of the MAP kinases
activation reactions (through phosphorylation) in the scaffold in the Cellerator
environment. All the possible scaffold states (species) are generated as are the
transition reactions between them. The indexes in the parentheses indicate the
phosphorylation status of the kinase in the corresponding position, with –1
corresponding to the absence of the kinase from the scaffold complex. K[4,1]
represents the external kinase activating the first MAP kinase (MAPKKK) in the
cascade.

The use of Cellerator has allowed us to perform systematic sensitivity
analyses of the assumptions made in our description of the role of scaf-
fold proteins in MAPK cascade regulation (Levchenko et al., 2000). We
previously described dual MAPKK and MAPK phosphorylation within
the scaffold to proceed as a single step (processive activation). This is sub-
stantially different from a two-step dual phosphorylation sequence occur-
ring in solution. In this distributive activation, the first phosphorylation
event is first followed by complete dissociation from the activating ki-
nase and subsequently the second phosphorylation reaction occurs. The
assumption of processive phosphorylation in the scaffold has some exper-
imental basis. Mathematically, it is equivalent to assuming that the rate of
the second phosphorylation reaction is fast compared to the first reaction.
Although this assumption was partially relaxed in our previous report,
no systematic study of relaxation of this assumption has been performed.
Using Cellerator we performed a systematic investigation of the role of in-
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creasing or decreasing the rate of the second phosphorylation within the
scaffold compared to reactions in solution. The results for the case when
the two rates are equal are presented in Figure 1.3. It is clear that relax-
ation of this assumption results in a substantial decrease of efficiency of
signal propagation.

Similar simulations were performed to investigate the effect of al-
lowing formation of a complex between MAPKKK in the scaffold and
MAPKKK-activating kinase, as well as the effect of allowing phosphatases
to dephosphorylate scaffold-bound kinases. In all cases the parameter val-
ues used in simulation are equal to those used for corresponding reactions
in solution (for the full list of parameters see Levchenko et al. (2000)). The
results are presented in Figure 1.3. Again, new assumptions resulted in
substantial down-regulation of efficiency of signal propagation. It is of
interest that the position of the optimum scaffold concentration (at which
the maximum signaling is achieved) is insensitive to making these new as-
sumptions. This agrees with the analysis in (Levchenko et al., 2000), which
suggested that the position of the optimum is determined only by the total
concentrations of the kinases and their mutual interaction with the scaf-
fold.

DISCUSSION AND FUTURE DIRECTIONS

We have shown that automatic model generation can simplify the transi-
tion from an informal, cartoon-based description of a reaction pathway
(or a network of pathways) to a system of differential equations. This
transition is obtained via a rigorous description of enzymatic kinetics and
other biochemical processes and is implemented utilizing symbolic trans-
lation. In addition to facilitating the potentially burdensome task of cor-
rectly writing out all of the necessary equations, this methodology pro-
vides an explicit and flexible way of controlling successive stages of model
creation. Furthermore, user intervention is possible both at the stage of
conversion of an informal pathway description into a set of chemical reac-
tions and at the later stage of mapping these reactions to the correspond-
ing mathematical forms. This flexibility is likely to increase the ability of
the user to participate in building and modifying the model at a level lim-
ited only by his or her expertise.

We have demonstrated the automatic generation of symbolic differen-
tial equations using a generic three-member scaffold, the MAPK cascade
mediated signaling system. The implementation that we have presented
– Cellerator – is capable of generating and solving these 101 differential
equations, a task not achieved in the previous detailed study of the effect
of scaffolds. Such automated model generation will prove especially use-
ful in describing even more complex biochemical reactions that involve
the formation of multi-molecular complexes. Such complexes may exist
in numerous states, each requiring a corresponding equation for its dy-
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Figure 1.3 The effect of relaxing several assumptions made in the previous
report. The time integral of free dually phosphorylated MAPK over first 100 sec is
plotted vs. scaffold concentration. The “control” curve reproduces the data with
all the assumptions made previously, whereas the other curves represent the
results of relaxation of these assumptions as described in the legend. All data are
obtained using the Cellerator package and are plotted in Microsoft Excel.

namical description. Because of the combinatoric expansion of reaction
possibilities, correctly writing out all of these equations by hand rapidly
becomes impossible.

We intend to pursue the research into role of scaffolds in signal trans-
duction regulation using this new tool. In particular we intend to use
extended indexing to specify reactions occurring in various sub-cellular
compartments. This will facilitate the study of the effect of scaffold
translocation to the cell membrane observed in gradient sensing and other
important regulatory processed. In addition we will attempt to develop
our algorithm to allow for scaffold dimerization, an experimentally ob-
served phenomenon.

Currently, Cellerator is “tailor-made” for modeling events in a lin-
ear pathway mediated by sequential covalent modification. It is within
our immediate plans to make the code more universal to include other
canonical forms and variable structure systems. In particular, we are in
the process of adapting Cellerator to two test cases: NF-κB and PKA path-
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ways. Consideration of these pathways will necessitate implementation of
the elementary reactions describing transcription, translation and protein
degradation. In addition, complex formation will be considered as a high
level reaction leading to an activation step within the pathway.
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