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Macromolecular binding forces between single protein-ligand pairs have been directly
measured with the Atomic Force Microscope (AFM) in several recent experiments. In a
typical measurement, the AFM probe, or cantilever, is attached to the ligand and exerts a
disruptive force on the bond between the macromolecular pair while the receptor is held fixed;
the probe is then moved away from the substrate until the bond is broken. When the bond
actually breaks, the tip is observed to slip; in fact, the ligand is jumping to a new equilibrium
point determined purely by the cantilever, as if the receptor had been instantaneously moved
to infinity. This ‘‘jumping-off’’ or ‘‘minimum rupture force’’ is determined by measuring
cantilever deflection. In a similar manner, the two molecules can be brought together and
the ‘‘jumping-on’’ force can be determined. These two measurements will result in different
estimates of the binding force due to hysteresis. This hysteresis is caused by a cusp catastrophe
in the space defined by probe position and cantilever stiffness. The phenomena of
‘‘jumping-off’’ in macromolecular rupture experiments and ‘‘jumping-on’’ when molecules are
brought together occur when the system passes through a saddle-node bifurcation as the
probe position is varied. Probe approach and withdrawal result in different post-bifurcation
equilibria, different energy dissipation, and different force measurements.
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1. Introduction

Forces between and within individual
biomolecules have been directly measured in
aqueous solution in recent experiments. For
example, the atomic force microscope (AFM)
has been used to study such entities as the
binding forces between single protein-ligand
pairs (Florin et al., 1994; Moy et al., 1994),
hydrogen bonds between DNA base-pairs

(Boland & Ratner, 1995), and the interaction
between complementary strands of DNA (Lee et
al., 1994; Florin et al., 1995). More recently, the
reversible unfolding of proteins has also been
examined with the AFM (Rief et al., 1997) and
laser tweezers (Kellermayer et al., 1997;
Tskhovrebova et al., 1997). Hysteresis, in which
the observed force depends on the direction of
probe motion, is an inherent property of such
measurements. Hence great care must be taken
in the interpretation of these experimental
results. While the present analysis will focus on
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ligand-receptor separation with the AFM, it is
equally valid for other types of force probes,
such as optical trapping (Block, 1995; Kuo &
Sheetz, 1993), reflection interference microscopy
(Evans et al., 1995; Evans, 1996), flexible glass
fibers (Meyerhofer & Howard, 1995), and
magnetic beads (Smith et al., 1992).

In a typical measurement, the AFM probe is
attached to a ligand and brought into proximity
of the receptor, which is held fixed. When the
molecular pair join together, the tip is observed
to ‘‘slip’’ (‘‘jumping-on’’). During withdrawal,
the probe, still attached to the ligand, exerts a
disruptive force on the bond holding the pair
together, and is withdrawn until the bond is
broken (‘‘jumping-off’’), also observed as a
‘‘slip.’’ The observed ‘‘jumping-on’’ and ‘‘jump-
ing-off’’ forces are different due to the phenom-
enon of hysteresis. The random thermal forces
due to the Brownian motion of a particle in
aqueous solution make this an inherently
stochastic problem. However, the resulting
equations are complicated and obscure the
underlying physics. Thus the following question
naturally arises: how valid is a classical
dynamical approach? Can the problem be
interpreted using the methods of nonlinear
dynamics? If so, then what do the force
measurements actually represent, and why does
hysteresis occur? While this question has been
theoretically addressed in terms of tip–surface
interactions (Pethica & Olver, 1987), no rigorous
mathematical description of the hysteresis
utilizing the methods of nonlinear dynamics has
been previously published.

2. Method

Jumping, which is an irreversible thermodyn-
amic process in which energy is dissipated via
viscous damping, can be easily understood with
the methods of nonlinear dynamics. In a
one-dimensional model the molecules can be
treated as simple point masses. Receptor
position is fixed, ligand motion is constrained to
a single axis, and center-of-mass effects and
off-axis forces are ignored. The cantilever is a
simple harmonic oscillator (spring constant k,
probe position d) and the intermolecular force is
a function F(x) of ligand-receptor separation

(equilibrium separation x0). For any fixed value
of d

mẍ=−hxt +F(x)− k(x− d) (1)

where m is the mass of the ligand. The frictional
term (−hxt ) is included because biomolecules are
typically suspended in a fluid of viscosity j

(where h1 6prj). For water, j1 0.01 poise
(h1 3.8×10−11 kg/s) (McQuarrie, 1976,
p. 452). ‘‘Jumping-off’’ occurs when a force
barrier described by the function F(x) is
penetrated as d is increased. When the probe is
moving d is not constant; treating d as a control
parameter gives an infinitely slowly moving
probe approximation, which we consider first.
The exact solution requires treating d as a
function of time. The resulting differential
equation is non-autonomous.

Specific calculations are considerably sim-
plified if the exact form of F(x) is known,
especially if there is some potential function V
such that

F(x)=−9V(x) (2)

Intermolecular potentials are typically spoon-
shaped; in other words, lim

x : 0
V(x)=a,

lim
x : a

V(x)=0, and there is a stable global
mınımum value at some x* (corresponding to the
equilibrium intermolecular separation), where
0Q x*Qa. A commonly used form for V is the
Lennard-Jones 6–12 potential (Sarid, 1991)
which is illustrated in Fig. 1.

VLJ =V0$0x0

x1
12

−20x0

x16% (3)

Results obtained using the Lennard-Jones
potential are indicated with the subscript LJ in
the remainder of this paper. A total potential

F. 1. The Lennard-Jones 6–12 potential given by eqn
(3).
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F. 2. Total potential function [sum of intermolecular
and probe potentials, eqn (6)] during probe approach with
a Lennard-Jones 6–12 potential. The probe is brought in
from d=2.7 (dashed line), through d=2.5 (solid line) and
d=2.3 (bold line) to d=2.1 (dotted line), where there is no
barrier and ‘‘jumping-on’’ occurs. The dimensionless
abscissa is in units of x/x0, and the ordinate is V/V0. A
spring constant of k=0.3V0 /x2

0 is used.
F. 4. Graphical illustration of hysteresis. The smooth

curve represents the intermolecular force [right hand side of
eqn (15)]. The lines illustrate the probe force [left hand side
of eqn (15)] at four different probe locations (dashed line
d= u1; solid line d= u2; bold line d= u3; bold dashes d= u4,
where u1 q u2 q u3 q u4). Attractive (negative) forces are
represented by the ordinate. The origin of the abscissa is at
u*=1. Inward motion of the probe corresponds to moving
the lines to the left in the figure, and outward motion
corresponds to moving the lines to the right. Fixed points
occur at intersections of f(u) and the lines for probe
potential (illustrated by points A–H). During approach,
there is one fixed point (A), for dq u2, then two (B and C,
at d= u2), and finally three fixed points (D, E, and F,
u4 Q dQ u2). The fixed point C splits into fixed points E and
F at d= u2; points D and E coalesce into G at d= u4. In
the infinitely slow probe approximation the system follows
ABDG; further inward motion causes a jump to point H
from point G. The ‘‘jumping on’’ force, FON, is the force
difference of this jump. When the experiment is reversed,
starting at H (withdrawal), the system follows HFCBA. A
much larger ‘‘jumping-off’’ force FOFF qFON is observed in
the jump from C to B than in the jump from H to G during
inward probe motion. Notice that the force curve between
C and G is never observed. In the example illustrated in the
inset (J), the probe is so stiff that there is always exactly one
steady state. Compare this and Fig. 5 with Figs 1.4(a) and
1.5 of Murray (1993, pp. 6–7).

function, consisting of the sum of the intermolec-
ular and probe elastic potentials, can then be
defined as

o(x)=V(x)+
1
2
k(x− d)2 (4)

Substituting eqns (2) and (4) into eqn (1) gives
the revised dynamical equation as

mẍ+ hẋ=−9o(x) (5)

o(x) has two wells, one each for the probe and
intermolecular forces. From eqns (3) and (4) the
total potential for a Lennard-Jones 6–12
interaction is

oLJ(x)=V0$0x0

x1
12

−20x0

x1
6

%+ 1
2k(x− d)2 (6)

During probe approach (Fig. 2), the probe well
shrinks while the intermolecular well grows; the
opposite occurs during withdrawal (Fig. 3).

When one well disappears, the ligand ‘‘falls’’ into
the other well; this is referred to as ‘‘jumping-on’’
(in adhesion experiments) or ‘‘jumping-off’’ (in
rupture experiments). The distance which the
ligand must ‘‘fall’’ is substantially larger during
‘‘jumping-off’’ then during ‘‘jumping-on’’ as
illustrated in Figs 2–4.

The process of non-dimensionalization allows
one to extract a minimal set of fundamental
physical parameters corresponding to non-di-
mensionalizations a, b, and D of the viscosity,
spring constant, and probe position. Although
well depth, V0, and equilibrium intermolecular

F. 3. Reversal of the simulation illustrated in Fig. 2
with the same parameter values. The probe starts at d=2.3
(dashed line), moves through d=2.6 (solid line) and
d=2.9 (bold line) to d=3.1 (dotted line) when the barrier
falls and ‘‘jumping-off’’ occurs.
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separation x0 could also be considered as
parameters, for any particular macromolecular
complex, they are fixed (in the present model).
Furthermore, since a (viscosity) and b (stiffness)
are fixed during any given experiment, the
cantilever position, D, becomes the principal
control parameter.

The spatial dependence can be expressed in
terms of the equilibrium intermolecular spacing
x0. Thus we take u= x/x0 as the dimensionless
spatial variable and D= d/x0 as the dimension-
less probe position. There is no obvious
characteristic time for the system, so we must
construct one. We arbitrarily select any charac-
teristic force value F0 (e.g. F0,LJ =V0/x0) and
use it to construct a time constant t=zmx0/F0

[e.g. tLJ = x0zm/V0]. Then we can define our
time variable let T= t/t, and a dimensionless
force function as f(u)=F(ux0)/F0. The dimen-
sionless Lennard-Jones 6–12 force is

fLJ(u)=12(u−13 − u−7) (7)

Define a= ht/m as the dimensionless friction
and b=v2t2 = kt2/m as the dimensionless
stiffness, where v=zk/m is the probe’s natural
harmonic frequency. Then the dimensionless
form of eqn (1) is

u0=−au'+ f(u)− b(u−D) (8)

where u'=du/dT. Typical parameter values for
a system in aqueous solution are v1 156 GHz,
t1 0.267 ps, b1 0.00174 and a1 4.0 for
m=150 Dalton, x0 =2Ä, V0 =20 kcal/mole
and k=0.006 N/m (Florin et al., 1994).
Commercial AFM cantilevers have 0.01 N/
mE kE 30 N/m. Recent force measurements
have been reported using k as high as 0.6 N/m
(b1 0.17) (Kasas et al., 1997).

The first order system equivalent to eqn (8) is

du/dT= v (9)

dv/dT=−av+ f(u)− b(u−D). (10)

The Jacobian, which is of interest at the fixed
points, is

J=$ 0
9uf− b

1
−a% (11)

and has eigenvalues

l=−
a

2
2

1
2

za2 +4(9uf− b) (12)

or

lLJ =

−
a

2
2

1
2

za2 +4(−156u−14 +84u−8 − b) (13)

for the Lennard-Jones potential. Fixed points
(u*, v*) occur at the bottom of the two potential
wells and the top of the barrier between them.
From eqns (9) and (10),

v*=0 (14)

and

b(u*−D)= f(u*). (15)

Fixed points with the Lennard-Jones potential
are found by combining eqns (7) and (15),

b(u*LJ)14 − b(u*LJ)13D+12(u*LJ)6 −12=0. (16)

Three fixed points must exist for the force
observations to be made, as illustrated in Fig. 4.
In this figure, straight lines represent the left
hand side of eqn (15), and a smooth curve the
right hand side; fixed points occur at the
intersections of the lines with the curve. This
leads to a constraint on the stiffness of the
cantilever, described by the parameter b. For
extremely stiff springs the line representing the
probe force is always steeper than the steepest
part of the curve representing the intermolecular
force, only one root exists, and the AFM will
never slip.

The locus of fixed points expressed as a
function of the parameters b and D, u*LJ(b,D), is
a two-dimensional surface which partially
‘‘folds’’ back on itself, as illustrated in Fig. 5.
The projection of the ‘‘folds’’ [defined as points
where a tangent plane to u*LJ(b,D) is vertical] into
the (b, D) plane is a cusp-shaped curve whose
interior contains the points for which three fixed
points exist. The point of the cusp occurs at
b= bmax, where bmax is determined from the value
ux such that the slope of the force curve at ux , f'(ux ),
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is maximized; then bmax = f'(ux ). For VLJ, the
probe is ‘‘too-stiff’’ unless

bQ bmax,LJ =(144/13)× (13/4)−1/3 1 7.48.

This limitation does not pose a problem for the
AFM, where b is typically one to three orders of
magnitude smaller; however, it should be kept in
mind as newer force probe techniques are

F. 6. Phase portrait for force probe measurement. Top:
a=0 (vacuum); Bottom: a=4 (aqueous solution). The
fixed points are indicated by the solid circles, and their
stable and unstable manifolds by the bold lines.

F. 5. Points on the surface correspond to the locations
of the fixed points for any given parameter values b and D.
The surface partially folds back over itself, revealing a
cusp-shaped region in the parameter space (shaded) within
which there are exactly three fixed points. A plane
perpendicular to the b-axis which passes through the cusp
intersects the surface in an S-shaped curve. This is the
bifurcation curve. During any single experiment, b
(cantilever stiffness) is fixed and the state of the system is
constrained to remain on this curve. Hysteresis occurs
because of the fold in the surface, which causes the system
to ‘‘fall’’ from the upper to the lower surface during probe
approach, and ‘‘jump’’ from the lower to the upper surface
during probe withdrawal. As the ligand is brought in from
infinity (solid arrows) it follows the upper leg of the
bifurcation curve until it can do no further (1), ‘‘falling’’
over the edge to the bottom leg (2) as it forced further
inward (3). When the probe is withdrawn [(4), dashed
arrows], the ligand can continue beyond the earlier
bifurcation point until the lower leg of the S-curve twists
back on itself (5). Forcing D to increase causes the system
to ‘‘jump’’ up to the higher curve (6). Hence the process is
not reversible.

developed. With softer springs, force measure-
ments are possible, although the entire force
curve will never be observable.

3. Results

3.1.  

Consider first the vacuum case (a=0). When

9uf=−156u−14 +84u−8 Q b

l is purely imaginary and fixed points which
satisfy this condition are surrounded by closed
trajectories (top plot of Fig. 6, numerical
simulation). These are the orbits of ligands
bound to the receptor or to the probe. When

9uf=−156u−14 +84u−8 q b

the eigenvalues are a positive/negative pair.
Fixed points are saddle nodes, which occur when
the probe and intermolecular force are exactly
balanced, and the ligand ‘‘sits’’ atop the barrier.
Any perturbation of the ligand’s position causes
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it to ‘‘fall’’ into one or the other of the two wells.
Finally, when

9uf= b

the eigenvalues are both equal to zero. As D is
slowly varied the locations of the fixed points in
u will change, causing (9uf− b) to change signs
as the system passes through a saddle-node
bifurcation.

This bifurcation allows for hysteresis to occur
in force measurements. In macromolecular
separation, there are initially three fixed points.
Those at well-bottoms have imaginary eigen-
values, while the one at the peak has a
positive/negative pair. At the exact instant of
rupture, there are precisely two points where
V'(x)=0: the probe well, and a saddle-node
formed by the coalescence of the macromolecu-
lar well and the barrier. Any positive increase in
D causes this fixed point to disappear and the
ligand ‘‘falls’’ into the probe well. The situation
is reversed when the probe approaches the base,
with two critical differences: (1) it is the probe
well that coalesces with the barrier, and (2)
coalescence occurs at different values of D during
approach and withdrawal. The situation is
phenomenologically identical to the spruce-bud-
worm population model (Ludwig et al., 1978)
and is related to a set of problems known as a
cusp catastrophe (Murray, 1993, pp. 4–8; Nayfeh
& Balachandran, 1995, pp. 85–86).

System dynamics for a single apparatus (fixed
b) can be represented by plotting the location of
the fixed points (u*) vs. probe position (D). This
plot, which corresponds to planar sections
through the surface of Fig. 5 perpendicular to the
b-axis (Fig. 7), is called a ‘‘bifurcation diagram.’’
A bifurcation diagram is interpreted as described
in Fig. 5. As the ligand is ‘‘brought in’’ from
infinity by reducing D, it follows the top leg of
the S-shaped curve until it can go no further.
Additional reduction in probe position causes
the ligand to fall to the lower leg of the S-curve,
because it can go no further on the upper leg.
When the probe is withdrawn to separate the
pair, the ligand follows the lower leg of the
S-curve, jumping to the upper leg only when it
can follow the bottom one no longer. This type
of hysteresis is common around cusp-catastro-
phes (Nayfeh & Balachandran, 1995, pp. 85–86).

3.2.   

Although viscosity does not change the
location of the fixed points, the trajectories are
significantly different (bottom plot of Fig. 6).
When

9ufQ b− a2/4

the eigenvalues are a complex-conjugate pair
with negative real part and the fixed points are
stable spirals centers. When

b− a2/4Q9ufQ b

the eigenvalues are both real and negative and
the fixed points are nodal attractors. When

9uF= b

the eigenvalues are −a and 0; the saddle-node
bifurcation still occurs as it did in vacuum. When

9uf= b− a2/4

both eigenvalues are −a/2. This is the transition
point between stable spirals and nodal attractors.
When

9ufq b

the eigenvalues are a positive/negative real pair
and the nodes are saddle points.

F. 7. Bifurcation diagram for various values of b using
a Lennard-Jones 6–12 potential. Solid lines correspond to
the stable nodes (the wells) and dashed lines to the unstable
saddle node (the barrier). Notice that a barrier only exists
for a finite range of b; the leftmost curve corresponds to a
barrier-free case since bq bmax. Left to right, b=8, 2, 0.5,
0.1, 0.03.
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3.3.     

If probe motion is taken into account, the
system becomes non-autonomous.

u0=−au'+ f(u)− bu+ bD(T)

Natural resonances of the system will occur at
the poles of the Fourier transform ux (V) of u(T),
where

ux (V)= h
 (V)[F(V)+ bD
 (V)]

Here h
 (V)= [b+ iaV−V2]−1 is assumed to be
the Fourier transform of some function h(T),
and F(V) and Dx (V) are the Fourier transforms
of f(u(t)) and D(T), assuming that they exist.
Simple poles occur at the zeroes of hx (V),

V= i
a

2
[12z1−4b/a2]

Since it is typically true that b�a, the poles
occur approximately at

V1 1 ia

V2 1 ib/a

which correspond to frequencies of 14.9 GHz
and 1.63 MHz, respectively, using the typical
values quoted earlier (a1 4, b1 0.00174,
t1 0.267 ps). Driving the oscillator at either of
these frequencies will (mathematically) lead to a
Dirac d-function type of resonance. We can see
this formally by inverting the Fourier transform
to get

u(T)= h(T)*[IFT(F(V))+ bD(T)]

where ‘‘*’’ denotes convolution and IFT () is the
inverse Fourier transform operator. Inversion of
h (V) contributes a factor of

h(T)=
1

=V1 −V2=
[e2piV1T +e2piV2T]

to the convolution, indicating that there will also
be a natural resonance at the difference of the
first two frequencies, =V1 −V2=. This third
frequency is very close to V1 for the values
quoted above. The two exponential terms
contribute to the Dirac d-function resonances.

A second case to consider is where the driving
function is linear with time. For example, if the

F. 8. Oscillation of ligand during AFM probe
withdrawal. The probe starts at u=1.08, v=0. Parameter
values: a=0.05, b=0.1, c=5 ms−1.

probe in a macromolecular rupture experiment
starts at d0 and moves with a constant velocity c,

D(T)=D0 +CT

where D0 = d0/x0 and C= ct/x0. The resulting
dynamics can be understood in terms of the
infinitely slow probe, with a third dimension
(time) added to the phase space. In vacuum, the
closed trajectories gradually spiral out and up
along the time axis until they cross the stable
manifold of the saddle node corresponding to the
instantaneous value of D. This is the ‘‘jumping-
off’’ point. From there onward, the trajectories
spiral in to the probe well. If the probe velocity
is sufficiently high, the trajectories will be
monotonic in u but will oscillate in v, even when
the system is initially in equilibrium. For slower
velocity and lower viscosity u may also oscillate
(numerical result, Fig. 8). There is little
oscillation at higher viscosities (e.g. water,
a1 4).

3.4.  

Brownian motion of the fluid particles
introduces random stochastic forces upon the
macromolecules which give a finite probability
for ‘‘jumping-on’’ or ‘‘jumping-off’’ while the
barrier still exists. In a typical experiment, a large
number of measurements are made and a
histogram of force-vs.-distance (‘‘force spec-
trum’’) is obtained which gives this probability
distribution (Florin et al., 1994; Moy et al.,
1994). This probability has been previously
determined (Shapiro & Qian, 1997; Evans &
Ritchie, 1997) by solving the appropriate
Fokker–Planck equation (Chandresekhar, 1943)
with Kramers’ theory of molecular dissociation
(Kramers, 1941). The scope of the present
analysis has been limited to a deterministic
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analysis of the problem of macromolecular
separation. Thus the results presented here
would describe the separation of a single
macromolecular pair under the influence of an
average viscous force, rather than the probability
for rupture from a specific geometry. In our
previous stochastic analysis (Shapiro & Qian,
1997), we assumed that a probability could be
calculated at each fixed position of the probe
(infinitely slow probe approximation). The
stochastic analysis showed that there is a
minimum force value, below which rupture is
impossible and above which there is a finite
possibility of rupture. This force was defined as
the ‘‘minimum rupture force,’’ which occurs at
the one energy-well to two energy-well tran-
sition. The probability density function p(d) for
‘‘jumping-off’’ was shown to be

p(d)=
k(d)
V

exp6−g
d

x0

k(x)
V

dx7
where

k(d)=
vR(d)

2p
e−E/kT

×6z1+ (h/2mvB(d))2 − (h/2mvB(d))7
is the rate constant for the reaction

Bound Protein−Ligand Pair

004
k(d)

Unbound Protein−Ligand Pair

and vR(d) and vB(d) are determined from Taylor
expansions of the potential about the reactant
well and activation barriers when the cantilever
is at position d. Numerical integration of this
result gives a bell-shaped curve whose mean and
width are a function of probe velocity, with the
distribution widening and moving to the right as
velocity increases. At very high velocity, the
distribution width decreases somewhat, because
less time is spent in the stochastic two-well
region. In the low velocity limit, the distribution
approaches an exponential with a peak at the
‘‘minimum rupture force,’’ the expected result
for a Poisson process. Oscillations induced by
probe motion encountered in the present paper
should increase the spread in the force spectrum.

4. Discussion

Our results show that a deterministic analysis
can provide a description of the underlying
physics even though the problem is inherently
stochastic. The observed binding force depends
upon the position, speed, and direction of probe
motion, as well as cantilever stiffness. The force
measurements represent the difference between
two points on the force-vs.-distance curve.
Ideally, these two points represent the natural
bound state and the unbound state, where there
is no interaction. However, if the cantilever is too
stiff, no force observations are possible (Fig. 4).
Hence parts of the force-vs.-distance curve are
unobservable. Furthermore, adhesion obser-
vations give significantly smaller force values
than rupture observations because the inter-
action between the enzyme and the ligand begin
before the barrier drops. Thus care must be
taken in using expressions like ‘‘binding force.’’
Hysteresis occurs because there is a cusp-
catastrophe in phase space. Physically, the ‘‘slip’’
or ‘‘jumping-off’’ process is an irreversible
thermodynamic process in which energy is
dissipated via viscous damping. Mathematically,
the state of the system passes through a
saddle-node bifurcation as the cantilever pos-
ition varies where it jumps to a new equilibrium
position. A moving probe induces oscillations in
the system, causing a spread in the force
observations; except at extremely high speed,
viscosity damps these oscillations.

The class of experimental techniques analysed
in this paper has also been used to stretch and
relax long polymers such as Titin, revealing a
saw-tooth shaped force spectrum (Rief et al.,
1997; Kellermayer et al., 1997; Tskhovrebova et
al., 1997). In this case the hysteresis originates
from multiple sources, as sub-domains may
stretch and relax in different orders. This
phenomenon is more pronounced the greater the
extension. If high external forces are applied and
the rate at which the molecule is stretched or
released exceeds the rate of unfolding and
refolding of the molecule at equilibrium, a
large hysteresis is observed. This process of
polymer stretching and releasing should also be
explicable by the methods described above and
in the previous paper (Shapiro & Qian, 1997),
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particularly the graphical explanation (Fig. 4)
for force-hysteresis. The only differences would
be an increase in the number of energy wells; as
the molecule is stretched, individual wells
collapse together, while others develop. The state
of such a system could jump in a seemingly
combinatoric fashion between these wells with a
spread determined by the effects of Brownian
motion, probe velocity, and stiffness. However,
the number of allowed jumps would be limited
by the direction of probe motion and the detailed
local interactions of the individual molecules in
the chain. Thus it should be possible to
qualitatively describe the basic physics of
stretching protein polymers by combining the
methods of nonlinear dynamics with an appro-
priate Fokker–Planck equation for a model
system. This approach generalizes the Zimm–
Rouse bead–spring polymer theory (Rouse,
1953; Zimm, 1956).
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