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Abstract

GTARG is a computer program used to design orbit
maintenance maneuvers for the TOPEX/
POSEIDON satellite. These maneuvers ensure that
the ground track is kept within +1 km of an =9.9 day
exact repeat pattern. Maneuver parameters are
determined using either of two targeting strategies:
longitude targeting, which maximizes the time
between maneuvers, and time targeting, in which
maneuvers are targeted to occur at specific intervals.
The GTARG algorithm propagates non-singular
(near e=0) mean elements, taking into account
anticipated error c¢'s in orbit determination, Av
execution, drag prediction and Av quantization.
Merson's extension of Grove's theory is used for the
geopotential field. Kaula's disturbing function is
used to compute the luni-solar gravitational
perturbations. A satellite unique drag model is used
which incorporates an approximate mean orbital
Jacchia-Roberts atmosphere and a variable mean
area (VMA) model. Maneuver Av magnitudes are
targeted to precisely maintain either the unbiased
ground track itself, or a comfortable (3¢) error
envelope about the unbiased ground track.

I. Introduction

The goal of the TOPEX/POSEIDON mission is to
determine ocean surface height to an accuracy of 13
cm. (30) utilizing a combination of satellite altimetry
data and precision orbit determination. To facilitate
this mission, the satellite is maintained in a nearly
circular, frozen orbit (e = 0.000095, o = 90°) at an
altitude of =1336 km. and an inclination of i = 66.04".
This orbit provides an exact repeat ground track
every 127 revolutions ( = 9.9 days) and overflies two
altimeter verification sites: a NASA site off the coast
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of Point Conception, California, and a CNES site
near the islands of Lampione and Lampedusa in the
Mediterranean Sea.!2

The TOPEX/POSEIDON satellite was launched by
Ariane on August 10, 1992 into an injection orbit
which was =14 km. lower than the operational orbit.
The operational orbit was acquired on Sep. 22, 1992,
approximately 44 days after launch following six
maneuvers. Subsequent maneuvers have been
performed for ground track maintenance.

Mission objectives!? require that at least 95% of the
satellite ground tracks fall within a £1 km. wide
control band centered on a predefined reference grid
and overfly the two verification sites with the same
precision. Maneuvers must be spaced at least 30
days apart and occur as infrequently as possible.
They are to be performed as nearly as possible to the
transition between = 9.9 day repeat cycles (+1 orbit),
and preferably over land, to avoid disrupting alti-
metry data collection. Maneuver design uncer-
tainties include Av execution error, drag modeling
unpredictability, and orbit determination accuracy.

The principal maneuver design and trajectory
prediction tools available at the Jet Propulsion
Laboratory (JPL) are incorporated within a family of
computer programs known as the double precision
trajectory system?®> (DPTRA]). The trajectory gen-
eration module utilizes a predictor-corrector
integrator with automatic step size control. Optimal
maneuver design requires long duration orbit
prediction (> 200 days) and several iterations may
be required to determine a correct set of maneuver
parameters. Since a DPTRA] orbit prediction
incorporating all required orbital perturbations
requires =4.4 minutes of CPU time on the VAX-6000
computer for each day of trajectory prediction, the
cost in execution time soon became prohibitive.
Thus a rapid and precise analytical tool for
maneuver design became necessary. GTARG was
developed to meet this requirement.

GTARG combines orbit prediction and targeting
algorithms to design ground track maintenance



maneuvers. GTARG predicts the evolution of the
ground track, taking into account the effects of an
impulsive maneuver. Non-singular” mean elements?
are propagated with dynamic models that include a
high-order Earth gravity field, atmospheric drag,
and luni-solar gravity. Recurrence formulae are
used for the geopotential and luni-solar gravitational
perturbation. Since the propagation step size is a
integral multiple of the satellite’s period, a
polynomial fit to the mean orbital density predicted
by the Jacchia-Roberts model at the TOPEX/
POSEIDON altitude is used to determine the
atmospheric density.’ A variable mean area (VMA)
model? is used to account for drag area variation
due to the nearly continuous yaw-steering of the
satellite. The ground track is computed once per
orbit, as the longitudinal difference at the ascending
node between the actual and reference nodal
longitude. The orbit is propagated either for a user
specified time interval (runout mode) or until the
ground track crosses a specified edge of the control
band (targeting mode). Successive corrections to the
Av magnitude are made with a bisection algorithm
and the orbit is again propagated until the selected
control strategy is satisfied. Two control strategies
are available. In time targeting, the ground track
crosses the edge of the control band at a particular
time; in longitude targeting the time between
boundary crossings is maximized.

This paper describes the analytical models used by
GTARG. A functional description of the operating
modes is also given. The accuracy of the GTARG
orbit propagator is assessed by calibrating with
DPTRA] using all force models. Finally, an example
from TOPEX/POSEIDON mission operations
illustrates the targeting process.

II._Orbit Propagation Model

The propagation algorithm!! includes all pertur-
bations that cause significant variations in the
satellite ground track. These perturbations include
Earth oblateness, luni-solar gravity, and drag.
Keplerian mean elements are derived using the
procedure described by Guinn8 The Keplerian
elements serve as input to the dynamic model.
Internally, the Keplerian elements are converted into
a form which avoids the singularity near e=0.
These nonsingular’ elements are a, £=ecosw,
N=esinw, i, Q and L =w+M, where

4 = semi-major axis,

e = eccentricity,

i = inclination,

£2 = right ascension of ascending node,
@ = argument of perigee, and

M = mean anomaly.

The mean elements are updated after each time step
h to account for all perturbations. The updates are

a'=a+ah §))
E'=E+AE+ AL, + AL, )
M= 1+An+An, + An, 3)
i =i+ iy + A )
Q' =Q+Qh+AQ, +AQ, )
L’=L+nh+AL+AL, + AL, 6

where the primed elements are the values after the
update, and the unprimed are the values before the
update, and

a=rate of change in 4 due to drag,

n = mean motion,

KE,KE, and AL = secular perturbation due to
Earth gravity,

Q = secular node rate due to Earth gravity,

Ai, ,Aég,Ang AL, ,AQ, =long period pertur-
bations due to Earth gravity, and

Aiy A&, AT, AL, ,AQ, = long period pertur-

bations due to luni-solar gravity.

At each step all elements are initialized and
perturbations are recomputed with updated
elements for the next step. The Keplerian elements ¢,
w, and M are then obtained from

e=\’§2+1)2 @

o=tan"(n/§) 8)
M=L-0 )

The eccentric anomaly is found by solving Kepler's
equation!2 M =E —esinE, iteratively for E using
Newton's method,

E,—esinE, - M

10
1-ecoskE, (10)

En+1 = En -

The true anomaly vis computed by the standard
transformation2



v1-e?sinE

siny= ———8M (11)
l1—ecosE
cosE—e

cosy = ————— 12
l-ecosE 12)

The argument of latitude u is givenby u= o +v.

Each propagation step is actually performed as a
sequence of shorter propagations. The advantage of
this is to find the ascending node more accurately.
Accurate predictions of the mean elements at the
ascending node are needed since that is where the
ground track is actually measured. To reduce the
computation time it was decided to restrict

h=mr, (13)

where
h = propagation step size
m =1,23,..,10,and
7, = nodal period.

Analysis has shown that while computation speed is
linear in m, very little accuracy is lost by setting m =
10. Successive nodes are precisely located at every
major step h using the method of secants on sinu.
The nodal crossing time is located to within 105
seconds (this corresponds to within 10 cm. in the z
coordinate). Once the node has been located, the
new orbital parameters are used as the starting point
for the next time step h. The propagation is
continued either until the desired time has elapsed
or the +1 km. control band is violated. The nodal
ground track is plotted as a function of time and a
summary of orbital details is printed at termination.

Geopotential Perturbations

The perturbation equations are expressed in terms of
the nonsingular parameters (Appendix A). Merson's
extension® of Grove's geopotential provided the
required recurrence relations. The secular effect of
J,* uses the explicit expressions given by Merson.
The method is based upon the theory of Kozai.!>

The recurrence formulae enable the use of zonal
harmonics to any order. GTARG was implemented
to include terms from J, through Jy. Due to the
form of the equations, computational speed is no
longer dominated by lengthy field evaluations, and
hence is relatively independent of field size. The
reference orbit was designed!? 16 using a 17x17
subset of the GEM-T2 gravity field,'” and later

tweaked'® with a 20x20 truncation of GEM-T3.1
This is the minimum field size sufficient for orbit
determination with the required accuracy. Thus a
20x20 truncated GEM-T3 is always used by DPTRA]
for trajectory propagation. GTARG's zonal model is
also normally truncated at J,,, to ensure consistency
with DPTRA], although it has the capability of using
higher order terms up to Jy,.

Luni-Solar Gravitational Perturbation

Earlier study'® showed that luni-solar gravity is
comparable in magnitude to drag at the TOPEX/
POSEIDON altitude. Kaula's disturbing function?
was used to develop expressions for the change in
orbital parameters due to luni-solar gravity
(Appendix B). Escobal's analytic form for the
planetary ephemeris in ecliptic mean elements!? is
used to predict the positions of the sun and the
moon. This analytical ephemeris was calibrated
with a precision planetary ephemeris (DE118) and
found to meet the accuracy requirements of GTARG.

Drag Perturbation
Earlier analysis'® showed that for satellites in near

circular orbits at altitudes > 1000 km. it is sufficient
to include the effect of drag only on a. The decay
rate for a satellite in a circular orbit traveling
through an atmosphere fixed to a rotating planet
was derived from Escobal's version?! of Sterne's??
result,

3
__pAC:;/E [1_ o, cosz} (14)

n

where

p = atmospheric density at TOPEX altitude,
A =drag area (VMA),

Cp = drag coefficient,

1~ 398600.436 km3 /sec?

M = mass of the satellite,

w, = earth rotation rate,

n = mean motion of the satellite,

Near-continuous yaw steering about the local nadir
and solar panel pitching are utilized by the
TOPEX/POSEIDON satellite to maintain the
dominant 28 m? solar panel pointed toward the sun
for power optimization. The actual pitch angle is
offset from the true sun line to control the rate of
battery charging. This attitude control strategy
causes the true satellite drag area to continuously
vary by as much as 4:1 during a single orbit period.1”



This continuously variable area (CVA) is a rapid
periodic function of orbit angle whose extrema are a
slowly varying function of f’, the angle between the
orbit plane and the earth-sun line. The maximum
CVA amplitude occurs when B°=0, while the
minimum drag area coincides with the local maxima
of B’. The period of B’ variation is =56 days. The
use of a CVA model for orbit determination and
prediction is computationally intense. Instead,
required accuracies are achieved with an
approximate variable mean area (VMA) model,
which defines the mean area per orbit as a tabular
function of ’. The VMA model performance was
calibrated using the CVA.

Atmospheric density is computed using a simple
polynomial fit of the average orbital log density as a

function of the modified exospheric temperature T..,

]AL, =379°43.24°F 4 + 1.3°[F10.7 - F1o_7] (15)
15
+28°K,, +0.03%¢™

where

Fy.7 = uncorrected daily 10.7 cm. solar flux,
Fio7 = 81-day centered average of the 10.7 cm

solar flux, and
K, = daily planetary geomagnetic index.

The polynomial was developed® by a least squares
fit to the Jacchia-Roberts model?? using solar and
geomagnetic data over the entire solar cycle 21.

Maneuver Modeling
GTARG predicts the ground track evolution

following an impulsive maneuver, measured with
respect to the reference track. The maneuver is
defined in terms of magnitude (AV) and direction,
represented by the angles a@andé in the local-
horizontal/local-vertical (LHLV) coordinate frame.
The LHLV frame moves with the satellite. The z-
axis of the LHLV frame is defined by the satellite
radius vector, the y-axis by the orbit normal, and the
x-axis completes a right handed coordinate system.
In this frame o is the angle between the x-axis and
the projection of the maneuver vector on the x-y
plane, and § is the angle between the x-y plane and
the maneuver vector. For most orbit maintenance
maneuvers & =6 =0. The maneuver is applied by
transforming the pre-maneuver elements into a
nearly-inertial Earth centered Cartesian reference

frame (Escobal's PQW frame?®), and then into the
LHLV frame. The components of AV are then
added directly to the velocity vector. The post-
maneuver elements are computed by transforming
the LHLYV state back into Keplerian elements. -

I1I. Calibration With Numerical Integrator

Since maintenance maneuvers are scheduled as
infrequently as possible, they should be targeted
with maximum accuracy. For scheduling purposes,
the date of a maneuver is preferentially determined
at least one month in advance, and this date must
coincide to the transition between ground track
repeat cycles. Accurate targeting is ensured by
calibrating GTARG with DPTRA]J.

The targeting algorithm is described below in detail
(sec. V). Procedurally, GTARG is used as follows.
The maneuver magnitude is first determined with
GTARG and then verified with DPTRAJ. The
maneuver is implemented in DPTRA] by applying a
finite burn whose magnitude equals the GTARG
impulsive AV, and whose centroid time coincides
with the GTARG burn time. The resulting post-
maneuver mean elements and ground track histories
are then examined. This process is iterated until
satisfactory results are obtained in DPTRA] with all
force models enabled.

This process will require multiple iterations if the
first AV estimate is poor; the entire procedure
quickly becomes prohibitively CPU-expensive. If
GTARG is sufficiently precise at predicting the
ground track, however, the number of GTARG-
DPTRA] iterations can be reduced to one. The
DPTRA]J run then becomes one of maneuver
validation rather than maneuver targeting, and the
entire targeting process becomes far more
manageable.

The CPU time required for a GTARG run, including
the error model, Earth gravity to Jy, drag, and luni-
solar gravity, is = 0.14/m minutes for each day of
propagation, where m is the GTARG propagation
step size in orbits. This result is relatively
independent of the size of the gravity field,
decreasing by only ~20% when the field is truncated
at J,. Comparing this with the value quoted above
(sec. I) for DPTRAJ (4.4 minutes/day) gives

Speed of GTARG
Speed of DPTRA]

=94m =940 (for m=10)



or an increase in processing speed by approximately
three orders of magnitude when GTARG is used in
place of DPTRAJ.

The mean orbital parameters which are input to
GTARG are derived from the operational orbit
ephemeris (OOE). The OOE, which is produced by
DPTRA], is based upon a numerical integration of
the satellite state vector which includes all relevant
perturbing forces (oblate Earth, luni-solar gravity,
atmospheric drag, solar radiation pressure, solid
earth tides, polar motion, precession, and nutation).
It is used for mission planning, command
scheduling, TDRS and DSN acquisition, satellite
clock calibration, star tracker initialization and
satellite pointing control via on-board ephemeris
loads, science data processing and instrument
initialization, and verification of the ground track
repeatability. Predicted post-maneuver OOE files
are generated prior to all maneuvers as well as on a
weekly basis for satellite ephemeris loads. The
method given by Guinn3 is used for the conversion
between the osculating state in the OOE and the
mean elements used by GTARG.

Compeatibility between the DPTRA] and GTARG
mean elements is ensured as follows. A reference
orbit can be defined by turning off all perturbations
except for Earth gravity and tweaking the elements
until the ground track repeats after 127 revolutions.
This procedure can be performed with either

DPTRAJ or GTARG. Let MPP™** be the reference

mean elements derived with DPTRA], and A:IFTARG
be a similar set of reference elements derived with
GTARG. In general, METARG o A:I,.DPTR” because of
propagation and other modeling differences. The

mean elements MP™*%ysed for propagation by
GTARG are then obtained from the mean elements

derived from the OOE, M,-D PTRAJ as

MiGTARG — M‘_DPTRAJ + M‘GTARG _ MiDPTRAJ (16)

In particular, DPTRA]J models tesseral field
harmonics, time transformations (e.g., UT1-UTQC),
solid earth tides, precession, nutation and polar
motion, none of which are modeled by GTARG.
DPTRA] is updated whenever new timing and polar
motion data become available, usually weekly.
These changes primarily affect the semi-major axis a
and right ascension of node Q because the
TOPEX/POSEIDON satellite is in a frozen orbit.

The calibration procedure defined by eq. (16) is
repeated whenever new data is added to the system.

After each calibration, 30-day trajectories are
generated with both DPTRAJ and GTARG and
compared to verify GTARG's accuracy. Fig. 1 shows
a typical comparison of the equatorial crossing
longitudes using data following orbit maintenance
maneuver 1 (OMM1). OMMI1 took place on
September 12, 1992 at 23:13:30 UTC. DPTRA] used a
20x20 truncation of the GEM-T3 gravity field, while
GTRAG used a 20th order zonal field to produce
these results. Although a complete statistical
analysis encompassing all parametric variations has
not been performed, the longitudinal difference in
nodal crossings between DPTRA]J and GTARG is
less than =75 meters after 30 days for every case we
have examined. While the shape (and even the sign
of the difference) will vary from fig. 1 for different
starting epochs due to changes in the luni-solar
geometry and differences in drag, the essential result
will not.

s a 8 R” 3

GTARG - DPTRAJ Ground
Track, Meters

h o w
M

0 5 10 15 20 % 30
Days Following Maneuver

Fig. 1. Comparison between DPTRAJ and GTARG
following Orbit Maintenance Maneuver 1.

IV. Complexity of GTARG

GTARG has been shown to be both sufficiently
complex and sufficiently accurate to meet the
requirements placed upon it. But might a simpler
method have been sufficient? This can be answered
be examining each of the dynamic models
incorporated within GTARG: a zonal Earth gravity
field, drag, and luni-solar gravity. The necessity of
including drag and luni-solar gravity have been
demonstrated elsewhere.!® Fig. 2 shows the error in
the ground track calculation predicted by GTARG as
a function of Earth gravity field size starting from an
epoch of Nov. 3, 1992. The satellite ground track



remained well within the control band for the period
shown. The error is calculated by assuming that a
DPTRA]J run with a 20x20 gravity field and all
perturbations enabled represented the truth. While
the actual values shown will change with variations
in solar activity (hence drag) and luni-solar
geometry, the essential characteristic will not. If Jy
is the highest order zonal term used, then the
algorithm represents a converged trajectory if the
magnitude of the error never exceeds the fraction of
the error budget which is allocated to propagation
errors for all m > M. Fig. 2 shows that a zonal field
of at least 12th order is required to obtain an
accuracy of 50 meters after 30 days. Thus a simpler
technique, such as a two body propagation with ]2,
would not be sufficient. Furthermore, all precision
parameters are derived via a 20x20 geopotential; for
maximum compatibility between the mean and
osculating element sets, one would expect optimal
convergence at Jy,. Since the algorithmic
complexity is only weakly dependent on the field
size, nothing is lost by using a larger field in
GTARG. Hence GTARG has the minimum amount
of complexity required.
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Fig. 2. Error in ground track calculation by
GTARG. The "truth" is given by DPTRA]J.

V. Error Models

Eastern and western error envelopes on the ground
track are calculated for the ground track along with
the unbiased track. These are illustrated in fig. 3.
The error envelope defines the most eastward and
most westward ground tracks which can reasonably
be expected with a specified degree of confidence.

|<——— Control Band

Time ~—————m

~-— West Reference Track East —Bw-

Fig. 3. Ground track confidence envelope.

The longitudinal width of the envelope is derived
from anticipated maneuver execution, orbit
determination (OD), and drag prediction errors. The
drag modeling error is dominated by uncertainties
in solar activity prediction. Maneuver execution
errors are categorized into fixed, proportional, and
pointing errors. An error in maneuver execution
translates into a ground track error as

5(AR),, = ‘9((;“/’1) 5(av) =32 5(av) )

where
A\ = ground track longitudinal difference from
reference measured at the ascending node,

8(A1),, = loerrorin A1 dueto §(AV),

6(AV) =10 error in maneuver implementation,
, = earth rotation rate,

t = time following maneuver, and

V = satellite orbital velocity.

The orbit determination error is reflected primarily
as an error in the semi-major axis; the corresponding
ground track error becomes

3w,
2a

Y. (V)

oD oa (Aa)oo (18)

(Aa)op =

where
8(A1),,, =1 error A4 due to OD errors, and

(Ad),p =1oODerrorina.

Anticipated error ¢'s in the solar and geomagnetic

indices F,,,, F,,,, and K, are used to generate
high-density and low-density trajectories; the



resulting differences in the ground track with the
error-free trajectory are used to calculate the drag
error §(A4)pea-
The three types of errors are propagated, converted
into ground track units, and then combined to
predict a total root-sum-square (RSS) error envelope
in the ground track. The terms in the sum are
weighted to produce the desired level of confidence

[8(aM)] = k2p[8(82) ] + 52, [8(a2),, ]

+K'im‘ [E(Al)prag ]2 (19)

where
Kop: Kavs Kpree = Scale factors for OD, maneuver

execution, and drag estimation,
6(AA) = total error budget (half-with of the
confidence envelope).

The nominal TOPEX/POSEIDON confidence level is
95%. Assuming that the errors are distributed
normally, this corresponds to the 1.966 (x=1.96)
error level.

VL. Targeting Algorithm

Two classes of targeting strategies are implemented
in GTARG: longitude targeting and time targeting.
These are illustrated in fig. 4.

Control Band 4-»‘

Time ——pp

v
E
'y

[ -f——West Ground Track Fast—»
Fig. 4. Longitude and time targeting strategies.

The control band is shaded.

Longitude targeting utilizes the full control band to
maximize the time between maneuvers. Applying a
AV at the eastern edge of the band, the semi-major
axis is increased. The resulting higher nodal period
causes the ground track to drift westward. Drag
continuously reduces the nodal period until the

ground track becomes just tangent to the western
boundary; the ground track then reverses eastward
as the period continues to decrease. Eventually the
ground track returns to the eastern boundary after a
time TL. (shown in fig. 4).

Alternatively, in time targeting, the time between
maneuvers is selected first. A smaller AV, which
will allow the ground track to return to the eastern
boundary sooner than TL (T in fig. 4), is utilized for
time targeting to the eastern boundary. Similarly, in
time targeting to the western boundary , a larger AV is
used, causing the ground track to cross the western
boundary some time ¢ prior to the longitude
targeting turn-around time TTURN. GTARG
implements these three targeting schemes along
with a simple runout mode in which the ground
track profile is predicted but no maneuver targeting
is performed.

Targeting involves determination of the approx-
imate AV magnitude for the selected targeting mode.
GTARG makes as its first guess a constant-drag
approximation, ignoring the earth oblateness and
lunar and solar gravity perturbations. Starting with
equation (4) of reference (10), for longitude
targeting,

3mw

A
AV, = \j (Ao~ M) £Cp V3 (20)
e
where Al is the initial ground track and Ady,yis the
ground track of the western boundary. For time
targeting to the eastern boundary after a time T,

_PACRVIT  (BAgey—BA )V
o= m 3w, @
The trajectory is then successively propagated and
the AV is modified, until a satisfactory value of AV,
which produces the desired ground track evolution,
is found. For longitude targeting, successful targeting
means that the westernmost ground track of the
western confidence envelope just reaches (within a
user-supplied tolerance) but does not cross the
western edge of the control band (as in fig. 3). For
time targeting, the desired confidence envelope will
reach the desired edge of the control within a user-
specified tolerance of the targeted time. The second
iteration will either increase or decrease AV,
depending upon whether the targeted ground track
is overshot or undershot. Subsequent iterations for



AV are found by linear interpolation on the
maximum westward ground track (for longitude
targeting) or time of leaving the control band (for
time targeting). The algorithm may terminate earlier
if successive AV guesses are smaller than the
allowed command quantization level.

VIIL Targeting Example

The first TOPEX/POSEIDON ground track
maintenance maneuver was implemented on
October 12, 1992. The pre-maneuver state was
approximately 10 meters beneath the repeat orbit;
the targeted post maneuver orbit was approximately
21 meters higher than the pre-maneuver state
(targeted AV = 9.18 mm/sec). The maneuver details
are shown in fig. 5. Inputs to the error model
included fixed and proportional AV errors of
O firea =-004433  mm/sec and O ,ppomiona =1.67%,
and orbit determination errors of o,, =33 cm. The
errors were assumed to be normally distributed and
the 95% confidence limits set to 1.966. The
algorithm for the prediction of solar flux and
computation of the 81-day centered average
described in reference (9) was used to produce the
solar and geomagnetic data profile, based upon the
most recent 27-day Space Environment Services
Center (SESC) outlook. A constant value of Kp=2.6,
the average of the most recent 27-day available at the
time of the targeting process, was used after 27 days.
F\o.7 was predicted by repeated the 27-day outlook

as required; the 81-day centered average, m, was
built from these predictions. A statistical analysis of
the accuracy of this method for the first 9 months of
1992 was used to generate the solar and geomagnetic
error o's.

VIII. Summary

GTARG is a rapid and accurate analytical tool which
was developed to generate strategies for ground
track maintenance maneuvers. It incorporates the
effects of error sources and the minimal set of
dynamical models needed for ground track
accuracy. These models include central body
gravity with zonal perturbations to at least the [y,
luni—solar gravity, and drag. The mean element
propagation scheme and simplified drag model
allow for an increase in the throughput speed of a
single run by nearly three orders of magnitude. At
the same time, accuracy is not severely impacted by
the simplification of models when it is measured in
terms of equatorial crossing at ascending node.

Since such a measurement is sufficient for
maneuver targeting, multiple numerical integration
targeting iterations can be replaced by a single
GTARG targeting run followed by a single DPTRA]
numerical orbit integration for precise design
verification. A timely calibration scheme has been
developed to ensure the compatibility between
GTARG and DPTRA] mean elements.
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Fig. 5. Targeted and 95% Confidence band (shaded)
for Orbit Maintenance Maneuver #1.

Both longitude and time targeting strategies have
been demonstrated with an example from the
TOPEX/POSEIDON mission using errors in orbit
determination, thrust execution and drag prediction.
These error estimates are used to predict the ground
track with a 95% certainty. The versatility of
GTARG stems from both its accuracy and its speed,
which allow for exploration of the parametric
dependence of ground track upon data variations at
a fraction of the cost of orbital integration while still
maintaining a high degree of confidence in the
ability to correctly predict the ground track.
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ndix A. Earth Gravity Model

Merson's extension!®> of Groves' theory!? is
implemented to 29th order in the geopotential field.
Given the orbital elements the following items are
calculated:

no = % (A-1)
n=n0[1+%JZ(R,/p)lel—ez(1—%sin2i0)] (A-2)
p=a(l-¢?) (A-3)

where R, is the equatorial radius of the earth. Let]

and k be indices where! >2 and 0 <k <l . Define
the functions
v=2(l-k). (A-4)
1, k=0
""={2, k#0 (A-5)
0, (I-k) odd
THO0) =4 (-1)" ] A-6
Y M‘., (I-k) even (A-6)
2'vi(l—v)!
1-)IT*O)n(R, /p)
lk=_uk( - )T (0)n(R, /p) (A-7)
piad 17 1 ( B 1)
e U+E+D(I-K)
S S A .22 A-8
! 20k +1) (A8
Bt =af,. (A-9)

The inclination function is defined for I 22 and k 2
1as

Af =1 (A-10)

Af,, = cosi (A-11)
k .. 2.

AF1 = Ak cosi— SIS L gk (A-12)

The eccentricity functions are defined for ! 22 and 1
<k <1,

Bf=0 (A-13)
B, =1 (A-14)
Bf*' =B} + ﬂ' B,"“ (A-15)

The secular perturbations due to the zonal har-
monics thus are

Imn
Q,ona =~ 2,17} BY A} (A-16)

1=2

lnes
@t = ZJ,y,o[a,oB,oA,l cosi+AL (1B + BB} )] (A-17)
=2

Lo
Pional = ZqJIYI A’[(-1)B - BB} (A-18)
1=

where g = 1-¢2. The secular perturbations due to J,2
are

Q, = 53 (R./p)"

[(4+ 1241- €2 - 9e2)cosi- (A-19)
(40 +36V1-e2 — Sez)cos3 i]
@y =2 u’( ) [10 2u41-&% +
(A-20)
25¢* +(36+ 192v1-¢* - 126e2)cos2i—
(430 +360V1—¢? - 45e2)cos4 i]
4 .
=5 nlz( ) Vl—ez[lﬁ 1-¢* -
)4
(A-21)
2562 — (60+ 96V1—e? — 90e2)cos2 i+
10+(130+ 1441— €2 —25e2)cos4 i]
Thus the secular rates become
Q.=Q,,.,+Q, (A-22)
tbs = d)zoml + d’2 (A'23)
ns = nwm + n2 (A'24)
L =n,+a, (A-25)

and the updates to the secular perturbations are

AE = &y (cos@,h—1)~ 1q sin(d@,h) (A-26)
AN = 1o(cos @,h 1)+ &, sin(d,h) (A-27)
AL=Lh (A-28)

The long periodic perturbations due to gravity can
also be broken up into two parts: the J, contri-
butions and the ;2 contributions.



Aa=0 (A-29)
A&, = AE, + AL, (A-30)
An, = Any + An, (A-31)
A, = A, + Ay (A-32)
AQ, = AQ, + AQ, (A-33)
AL, = AL + AL, (A-34)

where a subscript of 1 indicates the zonal
contributions and a subscript of 2 indicates a J,2
effect. To obtain the long term perturbations due to
the zonal harmonics, first define the following

coefficients on the range [23,1<k<[-2.

ay =J, v¥(esini)*AB} (A-35)
aj, = kJ; vk (esini)*'AfBf (A-36)
by = U, v (esini)*AFBF (A-37)
cy =J, YE(esind)* A Bl af (A-38)
dy = J, vE(esini)*AfBf '} (A-39)
C, = jcosk(w - ;)dt
(A-40)
= h[F1 cosk(a)— ) —kw hF, sin k( )]
S, = jsink(w— 2)ar
(A-41)
~ h[kw hF, cosk( )+ F, sink(co—;)]
where the expansions
2 4 6
==X X (A-42)
3 st 7
2 4
[ S (A-43)
2 24 720
have been used, with x = k@,h. Then
lonax 12
A&, = g*sinicoswy Y. 3 a}Sy —
1=3 k=]
2. 2 0, &
(Sm l — e~ CoS l) l 2 Zalkck (A_44)
1=3 k=1
e 1-2
T’O 2 Z(blk + dlk + Cn COSl)Ck
I=3k=]

10

[ ——
Any = g sinisin®g Y, Y, ajS, —
1=3k=1
(smzz—e cos I)Mfga Ci+
i 5B (a4
-
&0 X, (bl +dy + ¢y cosi)C,
1=3k=1
)
= —ecosi ), Y ajS; (A-46)
1=3k=1
s l220 cosi
AQ, = 22[ alk Clk]ck (A-47)
1=3k=1
AL = “ili[ 1+q)b cos” la'
1=3k=1 o it (A-48)

Clk COSl - a,k]Ck

The J;? contribution to the long period perturbations
is

3
Ao =-o

w3(R./p)"
{25(1 - ez)(l -16co0s® i +15cos* i)S2 -

n[(z +5¢%)—(32+112¢* ) cos® i + (A49)
(30+135¢?)cos* i|c; }
an, = -2 w3 (R, /p)
{27;(1 —e?)(1-16c0s? i +15cos* i)s, +
(A-50)
5[(2 + 5e2) —(32 +1 12e2)cos2 i+
(30+135¢%)cos* i]CZ}
4
iy = —-f—én.l%[%) e sinicosi(l — 1 sin? i)S2 (A-51)
4
AQ, = —%n]%[%—] e? cosi(16—3OCos2 i)S2 (A-52)

[ ; ] cz[m(sez—z)x

1-16cos?i +15c0s* i) + (A-53)

2+5e2)—(32+112e2)cos2i+

—_——~ e~ e~

30 +135¢2) cos* i]



Appendix B. Lunar-Solar Gravitational Perturbation

Kaula's disturbing function?’ is used to compute the
lunar-solar gravitational potential

R= Z”J 1+12 £;+:;,

[

>y ZFlmp(i)Flmh(iJ)x

P=0h=0,=—1
HlpO (e)G”,I (e, ) cosY

(B-1)

where {a;,¢;,i;,Q;,0;,M,} are the elements of the
sun or the moon (] = sun or | = moon), F,,,(i) is the
inclination function of the satellite, F,;(i;) is the
inclination function of the sun or the moon, Hyy (e)
is the eccentricity function of the satellite, Gy;(e;) is
the eccentricity function of the sun or the moon,

m=0

1
=4’ B-2
{2, m#0 2

and
:m(Q—Q,)—(I—Zh)w,—(l—2h+j)Mj (B-3)

The perturbations are then expressed as

(B4)
_ _ (l m)!
ASy = g 1+1 Zo (I +m)!
2 Z ZFlmh(iJ)Glhj(eJ)x
p=0h=0j=—-1
(B-5)

cosi
4 (D) H ()
l:smz\/l e di e w0
\/1—e2
e

N d
Fpp (0) % Hyy (e)]‘(’; cosYdt

11

[/ I

Z“ py

"~ na® &
1

)ID) ):Fw(incm,- (e,) %

p=0h=0j=~1

e

(I-m)!
& my

(B-6)

Fimp (1) HlpO(e)

__cosi
F,,,l ()H, o(e)} cosYd:
smn/l e? di ? i '([

Y/ na? y (l m)'

sini\/l—e2 1=2 5” Z (l+m)'

L1
)IP) ZFlmp(i)Flmh(iJ)x

p=0A=0j=—1

Al'b. =
(B-7)

A
Hy,g (e)Glhj (ey )mf sin Ydt

& JU=mt

= (l+m)'

1/ na’
sin i\/ 1-e% 1

>33

p=0h=0j=-1

AQ, =

l+l 2

a; .o

p F,,,,p(z)F,,,,,,(zj)x (B-8)

h
H,o(e)Gy,(e;) j cosYdt

gU=mt.
(1+ m)'

21211+1

Z Z Z Fimp (i) Hyp0 ()G (€))%
p=0h=0j=-1
(B-9)
cosi d ]

w/l—e2 siniZFImP(l) *

> d

m=0

[21F,,,,p )+

h
J cosYd:

To solve the integrals, substitute x = ¥¢, where

Y =mQ-(1-2h+ j)n, (B-10)

Then

h
[sinYds = h[xF, cosY, + F sin¥,] (B-11)

)
.fcos Ydt= h[—xF ,8inY, + F; cos Yo] (B-12)

0



Assigning I, =2 thenm=0,1,2, p=1, j=-10,1,
With this the eccentricity and
inclination functions may be calculated. The general
form of Hy,y(e) is given by

and A2=0,1,2.

Hyo(e)=1+ 3131 +16lp—16p)e?

hence
5
H200=1——2-e2
3
H210=1+7e2
4 52
Hyg=1-3e
7]
— Hyyy =—5e
de
d
—Hyq =3¢
Je 1210
J
— Hyyy =—5e¢
de 2
Similarly
1 1 13
Gy =—z€ " 16
4 5.2 .13 4
Gm—-l"—z-e]'FECJ
1 123 3
Goy = €5 —g€r
3 27 3
Gy =5e5+ger
_3
2\~ 72
Gzlo—(l—el)
Go11 = Ga10
Gp_y =Gy
G = Gago
Gyg1 = Gy

(B-13)

(B-14)
(B-15)
(B-16)

(B-17)
(B-18)

(B-19)

(B-20)
(B-21)
(B-22)
(B-23)
(B-24)
(B-25)
(B-26)

(B-27)
(B-28)

and the inclination functions F and oJF/di become

and

3. .

_3.2. 1
Fap = 2sin"i—=
Fagp = Fagp

3 . . .

3.
Fy) =~5sinicosi

Fpp= —%sini(l —cosi)

3 2
Fpo = 7(1+cosi)
3. .

Fpy = g-(l —cosi)?

(B-29)
(B-30)
(B-31)
(B-32)
(B-33)
(B-34)
(B-35)
(B-36)
(B-37)

12

0 3 ...

— Fo50 = —=8INiCOSi

oi M 1

d 3 ..,

EFZOI = 5 SIniCOsi

a J

—F,,, =—F

e R

--a—-F210 =3[2coszi+cosi—1]
ol 4

d 3 .

-é-F ——3[1+cosi—20052i]
5 2777

%Fm = —;sini(l+cosi)

J ...

— Fy;, = 3sinicosi

di

d 3 .
;—;{Fzzz = 3 sini(1-cosi)

(B-38)

(B-39)

(B-39)

(B-40)

(B41)

(B-42)

(B-43)

(B-44)

(B-45)
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